Copied to
clipboard

G = C6xC8:C22order 192 = 26·3

Direct product of C6 and C8:C22

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C6xC8:C22, C24:7C23, C12.82C24, C8:(C22xC6), D8:3(C2xC6), (C2xD8):11C6, (C6xD8):25C2, C4.66(C6xD4), (C2xSD16):4C6, SD16:1(C2xC6), D4:2(C22xC6), C4.5(C23xC6), Q8:3(C22xC6), (C2xC24):21C22, (C6xSD16):15C2, C12.329(C2xD4), (C2xC12).525D4, (C3xD8):19C22, (C6xD4):66C22, (C22xD4):14C6, (C3xD4):13C23, (C6xM4(2)):8C2, (C2xM4(2)):3C6, M4(2):3(C2xC6), (C6xQ8):54C22, (C3xQ8):12C23, C23.55(C3xD4), C22.23(C6xD4), (C22xC6).172D4, C6.203(C22xD4), (C2xC12).975C23, (C3xSD16):17C22, (C3xM4(2)):24C22, (C22xC12).465C22, (C2xC8):2(C2xC6), (D4xC2xC6):26C2, C2.27(D4xC2xC6), C4oD4:6(C2xC6), (C6xC4oD4):27C2, (C2xC4oD4):15C6, (C2xD4):15(C2xC6), (C2xQ8):16(C2xC6), (C2xC4).136(C3xD4), (C2xC6).419(C2xD4), (C3xC4oD4):24C22, (C22xC4).81(C2xC6), (C2xC4).45(C22xC6), SmallGroup(192,1462)

Series: Derived Chief Lower central Upper central

C1C4 — C6xC8:C22
C1C2C4C12C3xD4C3xD8C3xC8:C22 — C6xC8:C22
C1C2C4 — C6xC8:C22
C1C2xC6C22xC12 — C6xC8:C22

Generators and relations for C6xC8:C22
 G = < a,b,c,d | a6=b8=c2=d2=1, ab=ba, ac=ca, ad=da, cbc=b3, dbd=b5, cd=dc >

Subgroups: 530 in 298 conjugacy classes, 162 normal (30 characteristic)
C1, C2, C2, C2, C3, C4, C4, C4, C22, C22, C22, C6, C6, C6, C8, C2xC4, C2xC4, C2xC4, D4, D4, Q8, Q8, C23, C23, C12, C12, C12, C2xC6, C2xC6, C2xC6, C2xC8, M4(2), D8, SD16, C22xC4, C22xC4, C2xD4, C2xD4, C2xD4, C2xQ8, C4oD4, C4oD4, C24, C24, C2xC12, C2xC12, C2xC12, C3xD4, C3xD4, C3xQ8, C3xQ8, C22xC6, C22xC6, C2xM4(2), C2xD8, C2xSD16, C8:C22, C22xD4, C2xC4oD4, C2xC24, C3xM4(2), C3xD8, C3xSD16, C22xC12, C22xC12, C6xD4, C6xD4, C6xD4, C6xQ8, C3xC4oD4, C3xC4oD4, C23xC6, C2xC8:C22, C6xM4(2), C6xD8, C6xSD16, C3xC8:C22, D4xC2xC6, C6xC4oD4, C6xC8:C22
Quotients: C1, C2, C3, C22, C6, D4, C23, C2xC6, C2xD4, C24, C3xD4, C22xC6, C8:C22, C22xD4, C6xD4, C23xC6, C2xC8:C22, C3xC8:C22, D4xC2xC6, C6xC8:C22

Smallest permutation representation of C6xC8:C22
On 48 points
Generators in S48
(1 15 39 21 25 41)(2 16 40 22 26 42)(3 9 33 23 27 43)(4 10 34 24 28 44)(5 11 35 17 29 45)(6 12 36 18 30 46)(7 13 37 19 31 47)(8 14 38 20 32 48)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(2 4)(3 7)(6 8)(9 13)(10 16)(12 14)(18 20)(19 23)(22 24)(26 28)(27 31)(30 32)(33 37)(34 40)(36 38)(42 44)(43 47)(46 48)
(1 5)(3 7)(9 13)(11 15)(17 21)(19 23)(25 29)(27 31)(33 37)(35 39)(41 45)(43 47)

G:=sub<Sym(48)| (1,15,39,21,25,41)(2,16,40,22,26,42)(3,9,33,23,27,43)(4,10,34,24,28,44)(5,11,35,17,29,45)(6,12,36,18,30,46)(7,13,37,19,31,47)(8,14,38,20,32,48), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (2,4)(3,7)(6,8)(9,13)(10,16)(12,14)(18,20)(19,23)(22,24)(26,28)(27,31)(30,32)(33,37)(34,40)(36,38)(42,44)(43,47)(46,48), (1,5)(3,7)(9,13)(11,15)(17,21)(19,23)(25,29)(27,31)(33,37)(35,39)(41,45)(43,47)>;

G:=Group( (1,15,39,21,25,41)(2,16,40,22,26,42)(3,9,33,23,27,43)(4,10,34,24,28,44)(5,11,35,17,29,45)(6,12,36,18,30,46)(7,13,37,19,31,47)(8,14,38,20,32,48), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (2,4)(3,7)(6,8)(9,13)(10,16)(12,14)(18,20)(19,23)(22,24)(26,28)(27,31)(30,32)(33,37)(34,40)(36,38)(42,44)(43,47)(46,48), (1,5)(3,7)(9,13)(11,15)(17,21)(19,23)(25,29)(27,31)(33,37)(35,39)(41,45)(43,47) );

G=PermutationGroup([[(1,15,39,21,25,41),(2,16,40,22,26,42),(3,9,33,23,27,43),(4,10,34,24,28,44),(5,11,35,17,29,45),(6,12,36,18,30,46),(7,13,37,19,31,47),(8,14,38,20,32,48)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(2,4),(3,7),(6,8),(9,13),(10,16),(12,14),(18,20),(19,23),(22,24),(26,28),(27,31),(30,32),(33,37),(34,40),(36,38),(42,44),(43,47),(46,48)], [(1,5),(3,7),(9,13),(11,15),(17,21),(19,23),(25,29),(27,31),(33,37),(35,39),(41,45),(43,47)]])

66 conjugacy classes

class 1 2A2B2C2D2E2F···2K3A3B4A4B4C4D4E4F6A···6F6G6H6I6J6K···6V8A8B8C8D12A···12H12I12J12K12L24A···24H
order1222222···2334444446···666666···6888812···121212121224···24
size1111224···4112222441···122224···444442···244444···4

66 irreducible representations

dim11111111111111222244
type++++++++++
imageC1C2C2C2C2C2C2C3C6C6C6C6C6C6D4D4C3xD4C3xD4C8:C22C3xC8:C22
kernelC6xC8:C22C6xM4(2)C6xD8C6xSD16C3xC8:C22D4xC2xC6C6xC4oD4C2xC8:C22C2xM4(2)C2xD8C2xSD16C8:C22C22xD4C2xC4oD4C2xC12C22xC6C2xC4C23C6C2
# reps112281122441622316224

Matrix representation of C6xC8:C22 in GL6(F73)

6500000
0650000
0072000
0007200
0000720
0000072
,
72710000
110000
0072020
0072011
0007210
000010
,
7200000
110000
001000
0017200
0010072
0010720
,
7200000
0720000
0072000
0007200
0072010
0072001

G:=sub<GL(6,GF(73))| [65,0,0,0,0,0,0,65,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[72,1,0,0,0,0,71,1,0,0,0,0,0,0,72,72,0,0,0,0,0,0,72,0,0,0,2,1,1,1,0,0,0,1,0,0],[72,1,0,0,0,0,0,1,0,0,0,0,0,0,1,1,1,1,0,0,0,72,0,0,0,0,0,0,0,72,0,0,0,0,72,0],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,72,72,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

C6xC8:C22 in GAP, Magma, Sage, TeX

C_6\times C_8\rtimes C_2^2
% in TeX

G:=Group("C6xC8:C2^2");
// GroupNames label

G:=SmallGroup(192,1462);
// by ID

G=gap.SmallGroup(192,1462);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-2,-2,701,2102,6053,3036,124]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^8=c^2=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^3,d*b*d=b^5,c*d=d*c>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<